Rational Homotopy Theory - Lecture 16

BENJAMIN ANTIEAU

Basically, we discuss the same material in lecture on 10 March 2016 as well.

1. THE PL DE RHAM THEOREM

We are going to take a slightly different approach, based on the presentation in Félix-Halperin-Thomas [3], with some category-theoretical improvements to make our lives easier.

Recall that we have the simplicial cdga \(V(\bullet, \ast) \), and the rational PL de Rham complex of a simplicial set \(X \) is

\[
A^*(X) = \text{Hom}_{sSets}(X, V(\bullet, \ast)).
\]

Now, given any simplicial dga \(R(\bullet, \ast) \), we let

\[
A^*_R(X) = \text{Hom}_{sSets}(X, R(\bullet, \ast)).
\]

So, as an example, we have \(A^*(X) = A^*_V(X) \). We call \(A^*_R(X) \) the \textbf{cochains on X with coefficients in R}.

We will introduce a simplicial dga \(N \) such that \(A^*_N \) is naturally isomorphic to \(\text{N}^*(X) \), the normalized cochain algebra of \(X \). In fact, let

\[
\text{N}(\bullet, \ast) = \text{N}^q(\Delta^\ast).
\]

Lemma 1.1. For any simplicial set \(X \), the natural map \(\text{A}^*_N(X) \to \text{N}^*(X) \) is an isomorphism.

Proof. Let \(f \in A^q_N(X) = \text{Hom}_{sSets}(X, N(\bullet, q)) \). For a \(p \)-simplex \(\tau \) of \(X \), let \(f_\tau \in N(p, q) \), be the normalized \(q \)-cochain on \(\Delta^p \). Given a \(q \)-simplex \(\sigma \in X_q \), we can apply \(f \) to obtain \(f_\sigma = f(\sigma)e_q \in N(q, q) = Q \cdot e_q \), where \(e_q \) is dual to the fundamental simplex \(e_q \) of \(\Delta^q \). One checks that \(\sigma \mapsto f(\sigma) \) defines an element of \(N^q(X) \), and that the assignment \(\text{A}^*_N(X) \to \text{N}^*(X) \) is a dga map. If \(f \) vanishes on all \(q \)-simplices, then it must vanish on all simplices of \(X \). To see this, let \(\tau : \Delta^p \to X \) be a \(p \)-simplex of \(X \), and let \(\alpha : \Delta^q \to \Delta^p \) be some composition of face and degeneracy maps. Since \(f \) is a simplicial map, \(f_\tau(\alpha) = f_\circ(\epsilon_q) = 0 \).

Now, suppose that \(F \in \text{Hom}(X_q, Q) \) is a normalized cochain, so that \(F(\sigma_i(\tau)) = 0 \) for any \(i \) and \(\tau \in X_{q-1} \). Let \(\tau : \Delta^p \to X \), and define \(f(\tau) = N^p(F) \in N^q(\Delta^p) = N(p, q) \). Hence, \(\text{A}^*_N(X) \to \text{N}^*(X) \) is surjective. \(\square \)

Theorem 1.2. The natural maps

\[
\text{A}^*_N(X) \to \text{A}^*_N \otimes \text{V}(X) \leftarrow \text{A}^*_V(X)
\]

are quasi-isomorphisms of dgas for any simplicial set \(X \).

We will need some more preliminaries before proving this. We call a simplicial dga \(R(\bullet, \ast) \) \textbf{degree-wise contractible} if \(R(\bullet, q) \) the simplicial abelian group is contractible for all \(q \). Note that in Félix-Halperin-Thomas this property is called ‘extendable’. But, we will just call it what it is.

Proposition 1.3. Let \(G_\bullet \) be a simplicial group. Then, \(G_\bullet \) is fibrant as a simplicial set.

Proof. Recall that in order to be fibrant, dotted lifts must exist in any solid-arrow diagram

\[
\begin{array}{ccc}
A^q_k & \rightarrow & G \\
\downarrow & & \\
\Delta^q & \rightarrow & \ast.
\end{array}
\]

\textbf{Date:} 8 March 2016.
This is equivalent to the following condition: for any \(x_0, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n \in G_{n-1}\) such that \(\partial_i x_j = \partial_{j-1} x_i\), \(i < j\) and \(i, j \neq k\), there exists \(y \in G_n\) such that \(\partial_i y = x_i\) for \(i \neq k\). We construct a filling \(y\) inductively as follows. Let \(g_{-1} = 1\), the identity element of \(G_n\). Assume we have constructed \(g_{r-1}\) such that \(\partial_i g_{r-1} = x_i\) for \(0 \leq i \leq r-1\), \(i \neq k\). If \(r = k\), set \(g_r = g_{r-1}\). Otherwise, if \(r \neq k\), define \(u = x_r^{-1} \partial_r (g_{r-1})\). If \(i < r\),
\[
\partial_i (u) = \partial_i (x_r^{-1}) \partial_r g_{r-1} = (\partial_i x_r)^{-1} \partial_r g_{r-1} = (\partial_i x_r)^{-1} \partial_r x_i = 1,
\]
by hypothesis on the \(x_i\). Thus, if we set \(g_r = g_{r-1}(\sigma_r u)^{-1}\), we have \(\partial_i (g_r) = x_i (\sigma_{r-1} \partial_i (u))^{-1} = x_i\) if \(i < r\), and \(\partial_r (g_r) = \partial_r (g_{r-1}) u^{-1} = x_r\). Thus, taking \(y = g_n\) works.

Remark 1.4. Xing Gu asked in class why this proof does not work to show that \(G_*\) satisfies the lifting property with respect to all diagrams

\[
\begin{array}{ccc}
\partial \Delta^n & \to & G \\
\downarrow & & \downarrow \\
\Delta^n & \to & *
\end{array}
\]

In other words, why doesn’t the proof show moreover that \(G_*\) is contractible. The basic reason is as follows. If we took a sequence \(x_0, \ldots, x_n \in G_n\) such that \(\partial_i x_j = \partial_{j-1} x_i\) as in the proof, then the proof would work to construct \(g_{n-1}\) such that \(\partial_i (g_{n-1}) = x_i\) for \(0 \leq i \leq n-1\). What happens in degree \(n\)? We define \(u = x_n^{-1} \partial_n (g_{n-1})\), and then we set \(g_n = g_{n-1}(\sigma_n u)^{-1}\).

All good, right? **Wrong!** The class \(u\) is an \(n-1\)-simplex, so there is no \(n\)th degeneracy map to apply to it! This is related to the fact that a connected simplicial set with an **extra degeneracy** is contractible. If we had an extra degeneracy, the proof would work.

Here are a couple remarks related to this question. Recall that if \(G\) is a group, \(BG\) is the simplicial set with \(BG_n = G^n\) (so that \(BG_0 = \ast\)). The face maps are given by \(\sigma_i (g_1, \ldots, g_n) = (g_1, \ldots, \hat{g_i}, \ldots, g_n)\) and
\[
\partial_i (g_1, \ldots, g_n) = \begin{cases}
(g_2, \ldots, g_n) & \text{if } i = 0, \\
(g_1, \ldots, g_i g_{i+1}, g_{i+2}, \ldots, g_n) & \text{if } 0 < i < n, \\
(g_1, \ldots, g_{n-1}) & \text{if } i = n.
\end{cases}
\]

As mentioned before I think, \(BG\) is called the **classifying space** of \(G\), and indeed we have \(|BG|\) is a \(K(G,1)\)-space.

Exercise 1.5. Show that \(BG\) is a simplicial group if and only if \(G\) is abelian.

Exercise 1.6. Let \(A\) be an abelian group. Prove that by hand that if every diagram

\[
\begin{array}{ccc}
\partial \Delta^2 & \to & BA \\
\downarrow & & \downarrow \\
\Delta^2 & \to & *
\end{array}
\]

has a lift, then \(A = 0\).

Lemma 1.7. Suppose that \(R(\bullet, \ast)\) is degree-wise contractible and that \(X \subseteq Y\) is an inclusion of simplicial sets. Then, \(\Lambda^\ast_X(Y) \to \Lambda^\ast_X(X)\) is surjective.

Proof. Since \(R(\bullet, q)\) is a Kan complex for all \(q\), contractibility implies that \(R(\bullet, q) \to \ast\) is an acyclic fibration. But, \(X \to Y\) is a cofibration. It follows that there is always a lift in the
diagram
\[
\begin{array}{ccc}
X & \longrightarrow & R(\bullet, q) \\
\downarrow & & \downarrow \\
Y & \longrightarrow & *_{s}
\end{array}
\]
for any \(q \). This proves the lemma. \qed

Example 1.8. We saw that \(\nabla(\bullet, \ast) \) is degree-wise contractible in Lecture 14.

Lemma 1.9. The simplicial dga \(N \) is degree-wise contractible.

By construction, \(H^*(N(p, \ast)) \) is the cellular Q-cohomology of \(\Delta^p_{op} \), which is a contractible space, so it vanishes in positive degrees and is \(Q \) in degree 0.

Proof. Consider \(N(\bullet, q) \). As in the argument for the contractibility of \(\nabla(\bullet, q) \), it is enough to consider the \(q = 0 \) case, since it is enough to show that the homology of \(N(\bullet, q) \) vanishes, and this is a graded module over the graded ring \(N(\bullet, 0) \). Now, consider \(N(1, 0) \Rightarrow N(0, 0) \). Note that \(N(p, 0) = \text{Hom}(\Delta^p, Z) \cong \mathbb{Q}^{p+1} \). With the natural basis, \(N(1, 0) \Rightarrow N(0, 0) \) is \(\mathbb{Q}^2 \Rightarrow \mathbb{Q} \). The chain complex associated to \(N(\bullet, 0) \) has lowest differential \(\partial_0 - \partial_1 : \mathbb{Q}^2 \rightarrow \mathbb{Q} \), which we can write in matrix form as \((-1 \quad 1\)). Evidently this is surjective, so that there is no degree zero homology. Since \(H_0N(\bullet, 0) \) has a ring structure via the Alexander-Whitney map, and since \(1 = 0 \) in this ring, we have that the ring is zero, as desired. \(\square \)

Given a pair \(Y \subseteq X \) and a degree-wise contractible simplicial dga \(R \), we define \(A^*_R(X, Y) \) to be the kernel of \(A^*_R(X) \rightarrow A^*_R(Y) \). These are the **cochains of the pair with coefficients in** \(R \).

Proposition 1.10. If \(R \rightarrow S \) is a map of degree-wise contractible simplicial dgas such that \(R(p, \ast) \rightarrow S(p, \ast) \) is a quasi-isomorphism for all \(p \geq 0 \), then \(A^*_R(X, Y) \rightarrow A^*_S(X, Y) \) is a quasi-isomorphism for all pairs \(Y \subseteq X \).

Proof. It is enough to prove the proposition for \(Y = \emptyset \), so that we just have to prove that \(A^*_R(X) \rightarrow A^*_S(X) \) is a quasi-isomorphism for all simplicial sets \(X \). Note that \(A^*_R(\Delta^p) \cong R(p, \ast) \) and \(A^*_S(\Delta^p) \cong S(p, \ast) \), by representability. Let \(s_kX \) be the \(n \)-skeleton of \(X \). Note that \(s_kX = \Delta^k \), the disjoint union of the \(0 \)-simplices of \(X \). Since this is a coproduct,

\[
\prod_{\Delta^0 \rightarrow X} \Delta^0,
\]

it follows from our hypothesis that \(A^*_R(s_kX) \rightarrow A^*_S(s_kX) \) is a quasi-isomorphism. We prove by induction that if the claim is true for all \(p - 1 \)-dimensional simplicial sets, then it is true for all \(n \)-dimensional simplicial sets. So, assume that \(p - 1 \geq 0 \) and that \(A^*_R(s_{k-1}X) \rightarrow A^*_S(s_{k-1}X) \) is a quasi-isomorphism for all simplicial sets \(X \). Note that this includes the boundary \(\partial \Delta^p \). Since we know that we get a quasi-isomorphism for \(\Delta^p \), this implies that all three vertical maps are quasi-isomorphisms in

\[
\begin{array}{cccc}
0 & \longrightarrow & A^*_R(\Delta^p, \partial \Delta^p) & \longrightarrow & A^*_R(\Delta^p) & \longrightarrow & A^*_R(\partial \Delta^p) & \longrightarrow & 0 \\
0 & \longrightarrow & A^*_S(\Delta^p, \partial \Delta^p) & \longrightarrow & A^*_S(\Delta^p) & \longrightarrow & A^*_S(\partial \Delta^p) & \longrightarrow & 0.
\end{array}
\]

Suppose that \(Y \) is \(p - 1 \)-dimensional, and that \(X \) is obtained from \(Y \) by adding a single non-degenerate \(p \)-simplex \(\sigma \). Note that in this case, the boundary of \(\sigma \) is contained in \(Y \). In this case, \(A^*_R(X, Y) \cong A^*_R(\Delta^p, \partial \Delta^p) \), and similarly for \(S \). Indeed, both sides are completely determined by where they send the unique \(p \)-simplex not in \(Y \) or \(\partial \Delta^p \), respectively. It follows that \(A^*_R(s_{k-1}X) \rightarrow A^*_S(s_{k-1}X) \) is a (possibly transfinite) filtered limit of quasi-isomorphisms, and hence it is a quasi-isomorphism by the lemma below when \(I \) is sufficiently small. Since \(X = \text{colim}_p s_kX \), we again have \(A^*_R(X) = \text{lim}_p A^*_R(s_{k-1}X) \), the next lemma works for \(X \) since \(\mathbb{N} \) is \(\mathbb{N}_1 \)-small. In the general case for going from \(s_{k-1}X \) to \(s_kX \), it is better to argue
that $A^*_R(skp X, skp_{−1} X) \cong \bigoplus \Delta^p(\partial \Delta^p)$ where the direct sum is over all non-degenerate p-simplices of X.

Lemma 1.11. Suppose that I is an \aleph_ω-small filtered category, and let $F, G : I^{op} \to \text{Ch}^{>0}$ be functors from I^{op} to non-negatively graded cochain complexes with a natural transformation $F \to G$. If $F(i) \to G(i)$ is a quasi-isomorphism for all $i \in I$, then $\lim_{i^{op}} F(i) \to \lim_{i^{op}} G(i)$ is a quasi-isomorphism.

Proof. Since I is small and filtered, the derived functors $R^p \lim$ vanish for $p >> 0$ by work of Jensen (1970). It follows that the spectral sequence $E^{p,q}_2 = R^p \lim_i H^q(F(i)) \Rightarrow H^{p+q}(\lim_i F(i))$ converges, from which the lemma follows from the functoriality of spectral sequences. □

Question 1.12. Can we prove the lemma in full generality for small filtered I using homotopy limits and model categories?

Proof of Theorem 1.2. We can apply Proposition 1.10 to the two morphisms $N \to N \otimes \nabla \leftarrow \nabla$. We only have to observe that $N \otimes \nabla$ is degree-wise contractible. In degree q, we have

$$(N \otimes \nabla)(\bullet, q) \cong \bigoplus_{a+b=q} N(\bullet, a) \otimes \nabla(\bullet, b).$$

The homology of each summand on the right side vanishes by Küneth. □

What’s very nice about this approach is that we get multiplicativity without further work, and this answers Thom’s question completely.

References

