University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science
851 S. Morgan St.
Chicago, IL 60607
Office: SEO 419
Phone: +1-312-413-3745
Email: benjamin.antieau@gmail.com
I am an associate professor at UIC. Here is my CV (13 August 2019).
Chicago-area seminars: [UIC], [UC], [NU].
Vitamin K_{1}: Kerz–Strunk–Tamme.
Elden Elmanto (NU), Jeremiah Heller (UIUC), and I are organizing
a three-day workshop at UIC dedicated to understanding the proof of Weibel's conjecture on the vanishing of negative K-theory.
It will take place 30 May to 1 June 2018 at UIC.
UIC Seminars: I organize the Algebraic K-Theory Seminar [AKTS] (previously the Homotopy Theory Seminar). In the fall of 2018, we are having a seminar on perfectoid rings [18FOS].
One semester, I organized a Homotopy Algebras Seminar [HAS].
B. Antieau and D. Bragg, Derived invariants from topological Hochschild homology, submitted. [arxiv:1906].
N. Addington, B. Antieau, S. Frei, and K. Honigs, Rational points and derived equivalence, submitted. [arxiv:1906].
B. Antieau, On the uniqueness of infinity-categorical enhancements of triangulated categories, submitted. [arxiv:1812].
B. Antieau and T. Nikolaus, Cartier modules and cyclotomic spectra, submitted. [arxiv:1809].
B. Antieau, Periodic cyclic homology and derived de Rham cohomology, to appear in Annals of K-theory. [arxiv:1808].
B. Antieau and G. Vezzosi, A remark on the Hochschild-Kostant-Rosenberg theorem in characteristic p, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. [arxiv:1710].
B. Antieau, A. Mathew, and T. Nikolaus, On the Blumberg-Mandell Künneth theorem for TP, Selecta Mathematica, 24 (2018), no. 5, 4555-4576. [Selecta]. [arxiv:1710].
B. Antieau and J. Heller, Some remarks on topological K-theory of dg categories, Proc. Amer. Math. Soc. 146 (2018), 4211-4219. [arxiv:1709].
B. Antieau, A. Auel, C. Ingalls, D. Krashen, and M. Lieblich, Period-index bounds for arithmetic threefolds, Inventiones math. 216 (2019), no. 2, 301-335.
[Inventiones].
[arxiv:1704].
B. Antieau, D. Gepner, and J. Heller, K-theoretic obstructions to bounded t-structures, Inventiones math. 216 (2019), no. 1, 241-300.
[Inventiones].
[arxiv:1610].
B. Antieau and L. Meier, The Brauer group of the moduli stack of elliptic curves, submitted. [arxiv:1608].
B. Antieau and E. Elmanto, A primer for unstable motivic homotopy theory, Surveys on Recent Developments in Algebraic Geometry, Proc. Sympos. Pure Math. 95 (2017), 305-370. [arxiv:1605].
B. Antieau and B. Williams, Prime decomposition for the index of a Brauer class, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XVII (2017), 277-285. [arxiv:1510].
B. Antieau and G. Stevenson, Derived categories of representations of small categories over commutative noetherian rings, Pacific Journal of Mathematics 283 (2016), no. 1, 21-42. [arxiv:1507].
B. Antieau, On the integral Tate conjecture for finite fields and representation theory, Algebraic Geometry 3 (2016), no. 2, 138-149.
[arxiv:1504].
[c2.sage].
B. Antieau, T. Barthel, and D. Gepner, On localization sequences in the algebraic K-theory of ring spectra,
Journal of the European Mathematical Society 20 (2018), no. 2, 459-487. [arxiv:1412].
B. Antieau and K. Chan, Maximal orders in unramified central simple algebras, Journal of Algebra 452 (2015), 94-105, [Journal of Algebra]. [arxiv:1412].
B. Antieau, D. Krashen, and M. Ward, Derived categories of torsors for abelian schemes, Adv. Math. 306 (2017), 1-23, [Advances]. [arxiv:1409].
B. Antieau and B. Williams, The prime divisors of the period and index of a Brauer class, J. Pure Apl. Alg. 219 (2015), no. 6, 2218-2224,
[JPAA]. [arxiv:1403].
B. Antieau and B. Williams, Topology and purity for torsors, Documenta Math. 20 (2015), 333-355, [Documenta]. [arxiv:1311].
B. Antieau, Twisted derived equivalences for affine schemes, Brauer groups and obstruction problems (Palo Alto, 2013), Progress in mathematics, vol. 320, Birkhauser Basel, 2017, 7-12. [arxiv:1311].
B. Antieau, A reconstruction theorem for abelian categories of twisted sheaves, J. reine angew. Math. 2016 (2016), no. 712, 175–188.
[Crelle's].
[arxiv:1305].
B. Antieau, A local-global principle for the telescope conjecture, Adv. Math. 254 (2014), 280-299,
[Advances].
[arxiv:1304].
B. Antieau, Etale twists in noncommutative algebraic geometry and the twisted Brauer space, Journal of Noncommutative Geometry 11 (2017), no. 1, 161-192.
[arxiv:1211].
B. Antieau and D. Gepner, Brauer groups and etale cohomology in derived algebraic geometry, Geometry & Topology 18 (2014), no. 2, 1149-1244. [G&T].
[arxiv:1210].
B. Antieau and B. Williams, On the classification of oriented 3-plane bundles over a 6-complex, Topology and its Applications 173 (2014), 91-93. [arxiv:1209].
B. Antieau and B. Williams, Unramified division algebras do not always contain Azumaya maximal orders, Inventiones math. 197 (2014), no. 1, 47-56.
[Inventiones].
[arxiv:1209].
B. Antieau and B. Williams, The topological period-index problem over 6-complexes, J. Top. 7 (2014),
617-640. [Journal of Topology].
[arxiv:1208].
B. Antieau and B. Williams, Serre-Godeaux varieties and the etale index, Journal of K-theory 11 (2013), no. 2, 283-295.
[arxiv:1205].
B. Antieau, D. Gepner, and J. M. Gomez, Actions of K(pi,n) spaces on K-theory and the uniqueness of twisted K-theory, Trans. Amer. Math. Soc. 366 (2014), no. 7, 3631-3648.
[Transactions].
[arxiv:1106].
B. Antieau and B. Williams, The period-index problem for twisted topological K-theory, Geometry & Topology 18 (2014), no. 2, 1115-1148. [G&T].
[arxiv:1104].
B. Antieau, On a theorem of Hazrat and Hoobler, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2609-2613.
[arxiv:1104].
B. Antieau, A. Ovchinnikov, and D. Trushin, Galois theory of difference equations with periodic parameters, Comm. Alg. 42 (2014), no. 9, 3902-3943.
[arxiv:1009].
B. Antieau, Cech approximation to the Brown-Gersten spectral sequence, Homology, Homotopy and Applications 13 (2011), no. 1, 319-348.
[arxiv:0912].
B. Antieau, Cohomological obstruction theory for Brauer classes and the period-index problem, Journal of K-theory 8 (2011), no. 3, 419-435.
[arxiv:0909].
B. Antieau, The spectral index of Brauer classes, PhD thesis (2010), UIC. [pdf].