Rational Homotopy Theory - Lecture 19

BENJAMIN ANTIEAU

1. LONG EXACT SEQUENCES

Lemma 1.1. If X is an augmented cdga, then

(1) Hom, (X, U(n)) = Homg(QX", Q),
(2) right homotopy is an equivalence relation on Hom, (X, V(n)), and
(3) [X,V(n)]. 2 Homg (1" X, Q).

Proof. We proved (1) last time.

To prove (2), it is enough to show that map, (X, V(n)) is a Kan complex. Note that
because V (n) has trivial multiplication, so does V(p, *)@V (n) for all p > 0. In particular, we
can add augmented maps X — V(p,*)®V (n), and hence map, (X, V(n)) has the structure
of a simplicial abelian group. Hence, it’s a Kan complex, so that right homotopy is an
equivalence relation on Hom, (X, V(n)). Give more details!

Now, given an augmented map f : X — V(n), there is an induced map Qf : QX —
QV(n) = Q[n]. We get an induced map 7"(X) — 7"V (n) = Q. The map Hom, (X, V(n)) —
Homgq(7"X, Q) is evidently additive. Now, if X has trivial multiplication, then the map
is surjective. But, we can replace X by X/X - X to achieve this. So, the map is always
surjective. The Proposition 3.1 from last time shows that the assignment factors through
(X, V(n)]..

Thus, we have to check that the induced map [X, V(n)]. — Homg (7" X, Q) is injective,
where we still assume that X has trivial multiplication. Suppose then that f,g: X — V(n)
are pointed maps such that f. = g, : 7" X — 7"V (n) = Q. Let H : X — V(n)[—1] be
a chain homotopy between f and g, with no assumption about multiplicativity. Define
h:X — V(1,%)®@V(n) be defined by

hz)=dt @ Hz)+1® f(z) —t1 ® f(x) +t1 ® g(x)
for x € X. Then, dgph = g and ;h = f. Hence, f and g are homotopic maps, as desired. [J
One of the key parts of classical homotopy theory is the long exact sequence
o mY > mF > mX > mY = ngF = mgX = mY
associated to a fibration F' — X — Y. This has an exact analogue in rational cdgas.

Proposition 1.2. Suppose that

s a pushout square in cdga,, and assume that ¢ is a cofibration. Then, there is a long exact
sequence
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Proof. Tt is enough to check that the induced square

QV — QX

!

QW —— QY

is a pushout square of chain complexes with Q:¢™ injective for n > 0. Consider the augmented
cdga U(n) as above. Then, U(n) — Q is an acyclic fibration, so it satisfies the right
lifting property with respect to the cofibration V' — W. In particular, from Lemma 1.1(a),
Homgq(QW™, Q) — Homg(QV™", Q) is surjective. Hence, QV™ — QW™ is injective for n > 0.

To prove that the square is a pushout square, note that after taking duals, one obtains a

pullback square by Lemma 1.1(1). But, over a field, if the dual of a square with Qi™ injective
is a fiber square, then the initial square is a pushout square (exercise). O

Corollary 1.3. If X = Q in the proposition, we get a long exact sequence

(1]
2]
(3]
(4]
(5]
[6]
[7]

(8]

7V = W = °(W/V) = (V) — -
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