Rational Homotopy Theory - Lecture 19

BENJAMIN ANTIEAU

1. Long exact sequences

Lemma 1.1. If X is an augmented cdga, then

- (1) $\operatorname{Hom}_*(X, U(n)) \cong \operatorname{Hom}_{\mathbb{Q}}(QX^n, \mathbb{Q}),$
- (2) right homotopy is an equivalence relation on $\operatorname{Hom}_*(X, V(n))$, and
- (3) $[X, V(n)]_* \cong \operatorname{Hom}_{\mathbb{Q}}(\pi^n X, \mathbb{Q}).$

Proof. We proved (1) last time.

To prove (2), it is enough to show that $\max_*(X,V(n))$ is a Kan complex. Note that because V(n) has trivial multiplication, so does $\nabla(p,*)\tilde{\otimes}V(n)$ for all $p\geq 0$. In particular, we can add augmented maps $X\to \nabla(p,*)\tilde{\otimes}V(n)$, and hence $\max_*(X,V(n))$ has the structure of a simplicial abelian group. Hence, it's a Kan complex, so that right homotopy is an equivalence relation on $\operatorname{Hom}_*(X,V(n))$. Give more details!

Now, given an augmented map $f: X \to V(n)$, there is an induced map $Qf: QX \to QV(n) \cong \mathbb{Q}[n]$. We get an induced map $\pi^n(X) \to \pi^n V(n) = \mathbb{Q}$. The map $\operatorname{Hom}_*(X,V(n)) \to \operatorname{Hom}_\mathbb{Q}(\pi^n X,\mathbb{Q})$ is evidently additive. Now, if X has trivial multiplication, then the map is surjective. But, we can replace X by $X/\overline{X} \cdot \overline{X}$ to achieve this. So, the map is always surjective. The Proposition 3.1 from last time shows that the assignment factors through $[X,V(n)]_*$.

Thus, we have to check that the induced map $[X, V(n)]_* \to \operatorname{Hom}_{\mathbb{Q}}(\pi^n X, \mathbb{Q})$ is injective, where we still assume that X has trivial multiplication. Suppose then that $f, g: X \to V(n)$ are pointed maps such that $f_* = g_* : \pi^n X \to \pi^n V(n) = \mathbb{Q}$. Let $H: \overline{X} \to V(n)[-1]$ be a chain homotopy between f and g, with no assumption about multiplicativity. Define $h: X \to \nabla(1, *) \tilde{\otimes} V(n)$ be defined by

$$h(x) = dt_1 \otimes H(x) + 1 \otimes f(x) - t_1 \otimes f(x) + t_1 \otimes g(x)$$

for $x \in \overline{X}$. Then, $\partial_0 h = g$ and $\partial_1 h = f$. Hence, f and g are homotopic maps, as desired. \square

One of the key parts of classical homotopy theory is the long exact sequence

$$\cdots \rightarrow \pi_2 Y \rightarrow \pi_1 F \rightarrow \pi_1 X \rightarrow \pi_1 Y \rightarrow \pi_0 F \rightarrow \pi_0 X \rightarrow \pi_0 Y$$

associated to a fibration $F \to X \to Y$. This has an exact analogue in rational cdgas.

Proposition 1.2. Suppose that

$$V \xrightarrow{j} X$$

$$\downarrow i \qquad \qquad \downarrow k$$

$$W \xrightarrow{h} Y$$

is a pushout square in cdga_* , and assume that i is a cofibration. Then, there is a long exact sequence

$$\pi^0 V \to \pi^0 W \oplus \pi^0 X \to \pi^0 Y \to \pi^1 V \to \cdots$$

Date: 29 March 2016.

1

Proof. It is enough to check that the induced square

$$QV \longrightarrow QX
\downarrow \qquad \qquad \downarrow
QW \longrightarrow QY$$

is a pushout square of chain complexes with Qi^n injective for n > 0. Consider the augmented cdga U(n) as above. Then, $U(n) \to \mathbb{Q}$ is an acyclic fibration, so it satisfies the right lifting property with respect to the cofibration $V \to W$. In particular, from Lemma 1.1(a), $\operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}W^n, \mathbb{Q}) \to \operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}V^n, \mathbb{Q})$ is surjective. Hence, $\mathbb{Q}V^n \to \mathbb{Q}W^n$ is injective for n > 0.

To prove that the square is a pushout square, note that after taking duals, one obtains a pullback square by Lemma 1.1(1). But, over a field, if the dual of a square with Qi^n injective is a fiber square, then the initial square is a pushout square (exercise).

Corollary 1.3. If $X = \mathbb{Q}$ in the proposition, we get a long exact sequence

$$\pi^0 V \to \pi^0 W \to \pi^0 (W/V) \to \pi^1 (V) \to \cdots$$

References

- J. Adámek and J. Rosický, Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189, Cambridge University Press, Cambridge, 1994.
- [2] A. K. Bousfield and V. K. A. M. Gugenheim, On PL de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94.
- [3] W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126.
- [4] Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001.
- [5] P. G. Goerss and J. F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999.
- [6] P. Goerss and K. Schemmerhorn, Model categories and simplicial methods, Interactions between homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, pp. 3–49.
- [7] D. G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967.
- [8] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994.