
Rational Homotopy Theory - Lecture 16

BENJAMIN ANTIEAU

Basically, we discusses the same material in lecture on 10 March 2016 as well.

1. The PL de Rham theorem

We are going to take a slightly different approach, based on the presentation in Félix-
Halperin-Thomas [3], with some category-theoretical improvements to make our lives easier.

Recall that we have the simplicial cdga ∇(•, ∗), and the rational PL de Rham complex of
a simplicial set X is

A∗(X) = HomsSets(X,∇(•, ∗)).
Now, given any simplicial dga R(•, ∗), we let

A∗R(X) = HomsSets(X,R(•, ∗)).
So, as an example, we have A∗(X) = A∗∇(X). We call A∗R(X) the cochains on X with
coefficients in R.

We will introduce a simplicial dga N such that A∗N is naturally isomorphic to N∗(X), the
normalized cochain algebra of X. In fact, let

N(•, q) = Nq(∆•).

Lemma 1.1. For any simplicial set X, the natural map A∗N(X)→ N∗(X) is an isomorphism.

Proof. Let f ∈ Aq
N(X) = HomsSets(X,N(•, q)). For a p-simplex τ of X, let fτ ∈ N(p, q)

be the normalized q-cochain on ∆p. Given a q-simplex σ ∈ Xq, we can apply f to obtain
fσ = f(σ)eq ∈ N(q, q) = Q · eq, where êq is dual to the fundamental simplex eq of ∆q. One
checks that σ 7→ f(σ) defines an element of Nq(X), and that the assignment A∗N(X)→ N∗(X)
is a dga map. If f vanishes on all q-simplices, then it must vanish on all simplices of X. To
see this, let τ : ∆p → X be a p-simplex of X, and let α : ∆q → ∆p be some composition of
face and degeneracy maps. Since f is a simplicial map, fτ (α) = fτ◦α(eq) = 0.

Now, suppose that F ∈ Hom(Xq,Q) is a normalized cochain, so that F (σi(τ)) = 0 for
any i and τ ∈ Xq−1. Let τ : ∆p → X, and define f(τ) = Np(F ) ∈ Nq(∆p) = N(p, q). Hence,
A∗N(X)→ N∗(X) is surjective. �

Theorem 1.2. The natural maps

A∗N(X)→ A∗N⊗∇(X)← A∗∇(X)

are quasi-isomorphisms of dgas for any simplicial set X.

We will need some more preliminaries before proving this. We call a simplicial dga R(•, ∗)
degree-wise contractible if R(•, q) the simplicial abelian group is contractible for all q.
Note that in Félix-Halperin-Thomas this property is called ‘extendable’. But, we will just
call it what it is.

Proposition 1.3. Let G• be a simplicial group. Then, G• is fibrant as a simplicial set.

Proof. Recall that in order to be fibrant, dotted lifts must exist in any solid-arrow diagram

Λnk

��

// G

��
∆n //

>>

∗.
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This is equivalent to the following condition: for any x0, . . . , xk−1, xk+1, . . . , xn ∈ Gn−1 such
that ∂ixj = ∂j−1xi, i < j and i, j 6= k, there exists y ∈ Gn such that ∂iy = xi for i 6= k.
We construct a filling y inductively as follows. Let g−1 = 1, the identity element of Gn.
Assume we have constructed gr−1 such that ∂igr−1 = xi for 0 ≤ i ≤ r − 1, i 6= k. If r = k,
set gr = gr−1. Otherwise, if r 6= k, define u = x−1

r ∂r(gr−1). If i < r,

∂i(u) = ∂i(x
−1
r )∂i∂rgr−1

= (∂ixr)
−1∂r−1∂igr−1

= (∂ixr)
−1∂r−1xi

= 1,

by hypothesis on the xi. Thus, if we set gr = gr−1(σru)−1, we have ∂i(gr) = xi(σr−1∂i(u))−1 =
xi if i < r, and ∂r(gr) = ∂r(gr−1)u−1 = xr. Thus, taking y = gn works. �

Remark 1.4. Xing Gu asked in class why this proof does not work to show that G• satisfies
the lifting property with respect to all diagrams

∂∆n

��

// G

��
∆n //

<<

∗.

In other words, why doesn’t the proof show moreover that G• is contractible. The basic
reason is as follows. If we took a sequence x0, . . . , xn ∈ Gn such that ∂ixj = ∂j−1xi as in the
proof, then the proof would work to construct gn−1 such that ∂i(gn−1) = xi for 0 ≤ i ≤ n−1.
What happens in degree n? We define u = x−1

n ∂n(gn−1), and then we set gn = gn−1(σnu)−1.
All good, right? Wrong! The class u is an n − 1-simplex, so there is no nth degeneracy
map to apply to it! This is related to the fact that a connected simplicial set with an extra
degeneracy is contractible. If we had an extra degeneracy, the proof would work.

Here are a couple remarks related to this question. Recall that if G is a group, BG
is the simplicial set with BGn = Gn (so that BG0 = ∗). The face maps are given by
σi(g1, . . . , gn) = (g1, . . . , gi, 1, gi+1, . . . , gn) and

∂i(g1, . . . , gn) =


(g2, . . . , gn) if i = 0,

(g1, . . . , gigi+1, gi+2, . . . , gn) if 0 < i < n,

(g1, . . . , gn−1) if i = n.

As mentioned before I think, BG is called the classifying space of G, and indeed we have
|BG| is a K(G, 1)-space.

Exercise 1.5. Show that BG is a simplicial group if and only if G is abelian.

Exercise 1.6. Let A be an abelian group. Prove that by hand that if every diagram

∂∆2

��

// BA

��
∆2 //

<<

∗.

has a lift, then A = 0.

Lemma 1.7. Suppose that R(•, ∗) is degree-wise contractible and that X ⊆ Y is an inclusion
of simplicial sets. Then, A∗R(Y )→ A∗R(X) is surjective.

Proof. Since R(•, q) is a Kan complex for all q, contractibility implies that R(•, q)→ ∗ is an
acyclic fibration. But, X → Y is a cofibration. It follows that there is always a lift in the
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diagram

X

��

// R(•, q)

��
Y //

<<

∗,
for any q. This proves the lemma. �

Example 1.8. We saw that ∇(•, ∗) is degree-wise contractible in Lecture 14.

Lemma 1.9. The simplicial dga N is degree-wise contractible.

By construction, H∗(N(p, ∗)) is the cellular Q-cohomology of ∆p
top, which is a contractible

space, so it vanishes in positive degrees and is Q in degree 0.

Proof. Consider N(•, q). As in the argument for the contractibility of ∇(•, q), it is enough to
consider the q = 0 case, since it is enough to show that the homology of N(•, q) vanishes, and
this is a graded module over the graded ring N(•, 0). Now, consider N(1, 0) ⇒ N(0, 0). Note
that N(p, 0) = Hom(∆p

0,Z) ∼= Qp+1. With the natural basis, N(1, 0) ⇒ N(0, 0) is Q2 ⇒ Q.
The chain complex associated to N(•, 0) has lowest differential ∂0 − ∂1 : Q2 → Q, which we
can write in matrix form as

(
−1 1

)
. Evidently this is surjective, so that there is no degree

zero homology. Since H∗N(•, 0) has a ring structure via the Alexander-Whitney map, and
since 1 = 0 in this ring, we have that the ring is zero, as desired. �

Given a pair Y ⊆ X and a degree-wise contractible simplicial dga R, we define A∗R(X,Y ) to
be the kernel of A∗R(X)→ A∗R(Y ). These are the cochains of the pair with coefficients
in R.

Proposition 1.10. If R→ S is a map of degree-wise contractible simplicial dgas such that
R(p, ∗) → S(p, ∗) is a quasi-isomorphism for all p ≥ 0, then A∗R(X,Y ) → A∗S(X,Y ) is a
quasi-isomorphism for all pairs Y ⊆ X.

Proof. It is enough to prove the proposition for Y = ∅, so that we just have to prove that
A∗R(X) → A∗S(X) is a quasi-isomorphism for all simplicial sets X. Note that A∗R(∆p) ∼=
R(p, ∗) and A∗S(∆p) ∼= S(p, ∗), by representability. Let sknX be the n-skeleton of X. Note
that sk0X is the disjoint union of the 0-simplices of X. Since this is a coproduct,∐

∆0→X

∆0,

it follows from our hypothesis that A∗R(sk0X) → A∗S(sk0X) is a quasi-isomorphism. We
prove by induction that if the claim is true for all p− 1-dimensional simplicial sets, then it is
true for all n-dimensional simplicial sets. So, assume that p− 1 ≥ 0 and that A∗R(skp−1X)→
A∗S(skp−1X) is a quasi-isomorphism for all simplicial sets X. Note that this includes the
boundary ∂∆p. Since we know that we get a quasi-isomorphism for ∆p, this implies that all
three vertical maps are quasi-isomorphisms in

0 // A∗R(∆p, ∂∆p)

��

// A∗R(∆p)

��

// A∗R(∂∆p)

��

// 0

0 // A∗S(∆p, ∂∆p) // A∗S(∆p) // A∗S(∂∆p) // 0.

Suppose that Y is p − 1-dimensional, and that X is obtained from Y by adding a single
non-degenerate p-simplex σ. Note that in this case, the boundary of σ is contained in Y . In
this case, A∗R(X,Y ) ∼= A∗R(∆p, ∂∆p), and similarly for S. Indeed, both sides are completely
determined by where they send the unique p-simplex not in Y or ∂∆p, respectively. It follows
that A∗R(skpX)→ A∗S(skpX) is a (possibly transfinite) filtered limit of quasi-isomorphisms,
and hence it is a quasi-isomorphism by the lemma below when I is sufficiently small. Since
X = colimp skpX, we again have A∗R(X) = limp A∗R(skpX), the next lemma works for X
since N is ℵ1-small. In the general case for going from skp−1X to skpX, it is better to argue
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that A∗R(skpX, skp−1X) ∼=
⊕

A∗R(∆p, ∂∆p) where the direct sum is over all non-degenerate
p-simplices of X. �

Lemma 1.11. Suppose that I is an ℵω-small filtered category, and let F,G : Iop → Ch≥0 be
functors from Iop to non-negatively graded cochain complexes with a natural transformation
F → G. If F (i)→ G(i) is a quasi-isomorphism for all i ∈ I, then limIop F (i)→ limIop G(i)
is a quasi-isomorphism.

Proof. Since I is small and filtered, the derived functors Rp lim vanish for p >> 0 by work
of Jensen (1970). It follows that the spectral sequence

Ep,q2 = Rp lim
i

Hq(F (i))⇒ Hp+q(lim
i
F (i))

converges, from which the lemma follows from the functoriality of spectral sequences. �

Question 1.12. Can we prove the lemma in full generality for small filtered I using homotopy
limits and model categories?

Proof of Theorem 1.2. We can apply Proposition 1.10 to the two morphisms N→ N⊗∇ ← ∇.
We only have to observe that N⊗∇ is degree-wise contractible. In degree q, we have

(N⊗∇)(•, q) ∼=
⊕
a+b=q

N(•, a)⊗∇(•, b).

The homology of each summand on the right side vanishes by Künneth. �

What’s very nice about this approach is that we get multiplicativity without further work,
and this answers Thom’s question completely.
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