B. Antieau, D. Gepner, and J. Heller, On the theorem of the heart in negative K-theory, submitted. [arxiv:1610].
B. Antieau and L. Meier, The Brauer group of the moduli stack of elliptic curves, submitted. [arxiv:1608].
B. Antieau and E. Elmanto, A primer for unstable motivic homotopy theory, submitted. [arxiv:1605].
B. Antieau and B. Williams, Prime decomposition for the index of a Brauer class, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. [arxiv:1510].
B. Antieau and G. Stevenson, Derived categories of representations of small categories over commutative noetherian rings, Pacific Journal of Mathematics 283 (2016), no. 1, 21-42. [arxiv:1507].
B. Antieau, On the integral Tate conjecture for finite fields and representation theory, Algebraic Geometry 3 (2016), no. 2, 138-149.
[arxiv:1504].
[c2.sage].
B. Antieau, T. Barthel, and D. Gepner, On localization sequences in the algebraic K-theory of ring spectra,
submitted. [arxiv:1412].
B. Antieau and K. Chan, Maximal orders in unramified central simple algebras, Journal of Algebra 452 (2015), 94-105, [Online First]. [arxiv:1412].
B. Antieau, D. Krashen, and M. Ward, Derived categories of torsors for abelian schemes, to appear in Adv. Math, [Online First]. [arxiv:1409].
B. Antieau and B. Williams, The prime divisors of the period and index of a Brauer class, J. Pure Apl. Alg. 219 (2015), no. 6, 2218-2224,
[Online First]. [arxiv:1403].
B. Antieau and B. Williams, Topology and purity for torsors, Documenta Math. 20 (2015), 333-355, [Documenta]. [arxiv:1311].
B. Antieau, Twisted derived equivalences for affine schemes, to appear in the proceedings volume "Brauer groups and obstruction problems: moduli spaces and
arithmetic (Palo Alto, 2013)".
[arxiv:1311].
B. Antieau, A reconstruction theorem for abelian categories of twisted sheaves, J. reine angew. Math. 2016 (2016), no. 712, 175–188.
[Online First].
[arxiv:1305].
B. Antieau, A local-global principle for the telescope conjecture, Adv. Math. 254 (2014), 280-299,
[Online First].
[arxiv:1304].
B. Antieau, Etale twists in noncommutative algebraic geometry and the twisted Brauer space, to appear in Journal of Noncommutative Geometry.
[arxiv:1211].
B. Antieau and D. Gepner, Brauer groups and etale cohomology in derived algebraic geometry, Geometry & Topology 18 (2014), no. 2, 1149-1244. [Journal].
[arxiv:1210].
B. Antieau and B. Williams, On the classification of oriented 3-plane bundles over a 6-complex, Topology and its Applications 173 (2014), 91-93. [arxiv:1209].
B. Antieau and B. Williams, Unramified division algebras do not always contain Azumaya maximal orders, Invent. Math. 197 (2014), no. 1, 47-56.
[Online First].
[arxiv:1209].
B. Antieau and B. Williams, The topological period-index problem over 6-complexes, J. Top. 7 (2014),
617-640. [Online First].
[pdf].
[arxiv:1208].
B. Antieau and B. Williams, Serre-Godeaux varieties and the etale index, Journal of K-theory 11 (2013), no. 2, 283-295.
[arxiv:1205].
B. Antieau, D. Gepner, and J. M. Gomez, Actions of K(pi,n) spaces on K-theory and the uniqueness of twisted K-theory, Trans. Amer. Math. Soc. 366 (2014), no. 7, 3631-3648.
[Journal].
[arxiv:1106].
B. Antieau and B. Williams, The period-index problem for twisted topological K-theory, Geometry & Topology 18 (2014), no. 2, 1115-1148. [Journal].
[arxiv:1104].
B. Antieau, On a theorem of Hazrat and Hoobler, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2609-2613.
[arxiv:1104].
B. Antieau, A. Ovchinnikov, and D. Trushin, Galois theory of difference equations with periodic parameters, Comm. Alg. 42 (2014), no. 9, 3902-3943.
[arxiv:1009].
B. Antieau, Cech approximation to the Brown-Gersten spectral sequence, Homology, Homotopy and Applications 13 (2011), no. 1, 319-348.
[arxiv:0912].
B. Antieau, Cohomological obstruction theory for Brauer classes and the period-index problem, Journal of K-theory 8 (2011), no. 3, 419-435.
[arxiv:0909].
B. Antieau, The spectral index of Brauer classes, PhD thesis (2010), UIC. [pdf].
Notes, slides, and videos:
28-29 July 2016: Three lectures on (topological) K-theory at the Second Chicago summer school in geometry and topology: Video 1, Video 2, Video 3.